

NetHawk Probe for Mobile Network Measurements

Contents

- > NetHawk Probe solution
- > Application areas
- > Main features
- > System components and interfaces
- > Technical details
- > Use cases

NetHawk Probe Solution

NetHawk Probe applications

- > Network performance monitoring (KPIs)
- > Radio network troubleshooting and optimisation
- > Network rollouts
- > Implementation of value-added services
- > Selling the network data to 3rd parties =>

Main features

- > Provides an extensive support for both standard and manufacturer specific protocols.
- > Efficient filtering capability down to low level protocols.
- > Records and pre-processes a control and user plane data in real-time from STM-1, PCM (ATM over E1/T1/JT1) and Ethernet based interfaces.
- > Continuous and periodic/scheduled recordings.
- > Remotely controllable through IP network with NetHawk Probe Administration Manager (PAM).

NetHawk Probe Interfaces

NetHawk Probe Unit

- > Compact, rack-mountable PC.
- > Intel Pentium IV processor.
- > At minimum 40 GB hard disk.

- > NetHawk Interface Adapters for E1/T1/JT1 and STM-1 installed inside the chassis on PCI bus.
- > Two built-in Ethernet interfaces, one for remote control, second for network monitoring.
- > Windows 2000 Professional operating system.

NetHawk 3G Probe

- > Monitoring capacity:
 - Up to three STM-1 links,
 - Up to four ATM over E1/T1/JT1 links
 - One physical Ethernet link,
 - Concurrently 125 VPI/VCI connections in online.
- > lub f8 deciphering for control plane (SRB).
- > Dynamic CID allocation.
- > Supported Interfaces: lub, lur, lu-PS, lu-CS, Gn, Gi.

NetHawk 3G Probe

> Physical line input combinations:

	А	В	С	D
Number of STM-1 links	-	2	2	3
Number of PCM links (ATM over E1/T1/JT1)	4	2	-	-
Number of Ethernet links	1	1	1	1

NetHawk 2G Probe

- > Monitoring capacity:
 - Up to 8 PCM links (E1/T1/JT1)
 - 128 PCM connections (timeslots)
 - One physical Ethernet link
- > Gb deciphering
- > Supported interfaces:

Abis, A, Gb, Gn/Gp/Ga, Gi, Gc/Gd/Gf/Gr, Gs
E, SS7

NetHawk 2G Probe

> Physical line input combinations:

	А	В
Number of PCM links	4	8
Number of Ethernet links	1	1

Probe Administration Manager

- > Remote controlling, monitoring and configuring application for the NetHawk Probes:
 - Recording control,
 - Line configurations,
 - Filtering settings,
 - Probe Unit status monitoring.
- > User-friendly Windows® based graphical user interface.
- > Several users can configure and monitor the Probes from different locations.

Probe Administration Manager GUI

Probe Admir	nistrati	ion Manager								×
File View Too	ls Help	0								
			ATM ETH S	CAN TRAP						
Probe List 🗙	ATM Configuration X								×	
Probe1		Connection VF	ग ∨ ⊂।	CID	Line	Stack		Parameter name	Parameter value	I
Probe10	1	1	40	0	I ALCAP lub		*	RACH/FACH mode	1:UM 2-4:AM 5-15:TM	
2		1	55	0	1 1	NBAP		Receive filter	Receive All Control Frames	
	3	1	70	0	1	NBAP		DCH-ID mapping	equals (RRC = NBAP)	
4		✓ 1	120	0	1 /	AAL2 Dynamic lub		U-Plane mode	Auto	
	5	✓ 1	40	0	2 /	ALCAP lub				
	6	✓ 1	55	0	2 1	IBAP				
	7	✓ 1	70	0	2 1	IBAP				
	8 ATM Line State Monitor									
	9	Lin	ie 1	Line 2		Lin	Line 3			
	10		R2	R1	R2	R1		R2		
	11	Signal Lost	Signal Lost	Signal Lost	Signal L	ost 🛛 Signal Lost	Sig	nal Lost		
	12	Signal Alarm	Signal Alarm	Signal Alarm	n Signal Al	arm Signal Alarm	Sigr	nal Alarm		
ļ	13	Cell Lost	Cell Lost	Cell Lost	Cell Lo	st Cell Lost	C	ell Lost		
×		-								_
[11:16:12]	Co	onnection OK								
[11:16:17]	01	pening file tf:	s-file of Pr	obe Probel						
[12:49:31]	Po	olling ended								
1									1	
ID: 0	E	1/T1 ATM R	EC ACQ	TRAP	Config:		F	Record:		

NetHawk 3G Probe use case

> Optimising and troubleshooting WCDMA network

NetHawk 2G Probe use case

> Road traffic monitoring

NetHawk Probe time synchronisation with NTP server

- > NTP server receives accurate time directly e.g. from the atomic clocks aboard the GPS satellite system and sends time adjustment messages to the clients.
- > Probes have NTP client software that adjusts the Probe PC's clock.
- > Synchronisation accuracy is typically about $10 - 20^{\circ}$ ms (could be even better).
- > NetHawk does not have a NTP system as a product but it can be purchased separately from a NTP system suppliers.

